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In the famous thought experiment known as Wigner’s friend, Wigner assigns an entangled state
to the composite quantum system consisting of his friend and her observed system. In the context of
this thought experiment, Brukner recently derived a no-go theorem for observer-independent facts,
i.e. those facts that would be common to both Wigner and his friend. In this article, we show
that Brukner’s theorem fails in the presence of a horizon even if Wigner and his friend are on the
same side of the horizon. However, we also show that the failure of the theorem comes with a
price: the preservation of observer-independent facts requires that some of those facts must remain
unknowable.

I. INTRODUCTION

In 1961 Eugene Wigner introduced a curious thought
experiment that has recently garnered renewed interest in
the physics literature [1]. In the experiment, now known
as “Wigner’s friend”, the aforementioned friend performs
a measurement on a quantum system inside a sealed lab-
oratory. A so-called “super-observer” (played by Wigner
himself in the original paper) is placed outside the labo-
ratory. The outcome of the friend’s measurement is re-
flected in some property of the device that is performing
the measurement, e.g. a pointer reading or audible de-
vice click. Wigner describes the process unitarily based
solely on the information to which he has access. At the
conclusion of the process the friend’s description of the
original quantum state consists of a projection of that
state into one that corresponds to the outcome reported
by the device. By contrast, Wigner assigns a specific en-
tangled state to the system and the friend which he can
verify through some further experiment (e.g. communi-
cating with the friend). The main question that Wigner
provoked with his thought experiment was what happens
to the state from his (Wigner’s) point-of-view when his
friend observes a definite outcome? Does the state col-
lapse for Wigner at that exact moment or does it only
collapse for Wigner when he receives information about
the result of his friend’s measurement? If it is the latter,
then how can we reconcile the two apparently different
accounts of the original measurement process?

Wigner’s original intent with his thought experiment
was to support his view that consciousness was necessary
in order to collapse the wave function. It nevertheless
serves as an interesting way to compare various interpre-
tations of quantum mechanics. In particular, in objec-
tive collapse theories, Wigner’s state assignment can be
statistically disproven by carrying out many verifications
hence showing that the state is a definite, objective prop-
erty of the universe [2–4]. This is in contrast to other in-
terpretations where the state is only a relative property,
e.g. it is projected relative to the friend and in a su-
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perposition relative to Wigner [5, 6]. Both Wigner’s and
his friend’s description of the state are equally valid in a
relative sense since they accurately describe the world
Wigner and his friend experience respectively. When
they finally communicate, Wigner can update his descrip-
tion based on information he receives from his friend con-
cerning the results of the friend’s measurement. Thus,
strictly speaking, there is no inconsistency with quan-
tum theory in this case. In other words, Wigner’s friend
poses no apparent problems for epistemic interpretations
of quantum theory.

In response to the recent work of Frauchiger and Ren-
ner [7], Brukner has recently derived a Bell-type no-go
theorem for observer-independent facts that claims to
show that there can be no theory in which Wigner’s
and Wigner’s friend’s facts can jointly be considered to
be locally objective properties of the universe [8]. That
is, Brukner’s theorem denies that either Wigner’s or his
friend’s description of the state is a (locally) objective
property of a given theory. As Brukner makes clear, the
objective properties or “facts” described are understood
to mean “immediate experiences of observers.” That is,
it may refer to what some interpretations of quantum me-
chanics deems to be “real” (e.g. wave functions, Bohmian
trajectories, etc.) only to the extent that these directly
give rise to some sort of observable fact such as a pointer
reading or detector click.

The relative state description of Wigner and his friend
is analogous to the situation described by another fa-
mous thought experiment: Einstein’s twin paradox, the
first explanation of which was due to Paul Langevin [9].
In the twin paradox a pair of synchronized clocks be-
comes un-synchronized when one clock undergoes rela-
tivistic acceleration while the other remains inertial. In
Langevin’s retelling, observers co-moving with the ac-
celerated clock remain in regular contact with observers
who remain in the frame of the inertial clock. Thus it is
that the inertial observers will appear to see the acceler-
ated clock slow down while observers co-moving with that
same clock will see it behave normally. Each description
is equally valid in a relative sense since both clocks (and
their associated observers) maintain separate worldlines.
When the worldlines re-intersect, both sets of observers
can simply compare their respective results in order to
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arrive at a consistent description of the state of the clock
at that instant. As such, special relativity contains no
inconsistency in this case.

In this article we investigate a scenario in which the
experimental setup employed by Brukner in the proof of
his theorem is embedded in a twin-paradox-like setting.
The relative acceleration that is introduced occurs be-
tween two identical laboratories, each of which contains
an observer in the role of Wigner’s friend who makes a
measurement on a quantum system in their possession.
Likewise, each laboratory includes a co-moving external
super-observer in the role of Wigner who communicates
with the observer inside the laboratory and whose de-
scription of the quantum system depends on the infor-
mation received. We then extend the discussion to a sin-
gle Wigner’s friend-type experiment in which the relative
acceleration is then between Wigner and his friend.

Ultimately we find that Brukner’s no-go theorem fails
in the presence of a horizon and that, as such, there is
a point at which it again becomes possible to talk about
the concept of an observer-independent (i.e. locally ob-
jective) fact. However, we also show that the failure of
the theorem comes at the price of fully knowing those
facts. We begin by briefly reviewing Brukner’s theorem
and we reformulate his proof in terms of free bosonic
states. We then show the dependence of this proof on
the relative acceleration between the two halves of the
experiment. Finally we show that, though the failure of
Brukner’s theorem does mean that observer-independent
facts can exist, some of those facts must remain un-
knowable. We begin with a review of Brukner’s theo-
rem and its proof, but rather than using an entangled
spin-1/2 system, our model uses an entangled two-mode
free bosonic field which makes analysis in the presence
of acceleration simpler since it reduces a portion of the
problem to a discussion of the Unruh effect.

II. OBSERVER-INDEPENDENT FACTS FOR
INERTIAL OBSERVERS

A typical Wigner’s friend thought experiment involves
some two-level quantum system that can give rise to
two outcomes upon measurement. The outcomes are
recorded by a measurement apparatus that eventually
is read by Wigner’s friend and committed to memory.
The measurement apparatus as well as Wigner’s friend
are taken to be inside an isolated laboratory. Wigner is
placed outside this laboratory and can perform a quan-
tum measurement on the overall system consisting of the
two-level quantum system and the laboratory. It is usu-
ally assumed that all experiments are carried out a suf-
ficient number of times in order to ensure reliable statis-
tics.

Deutsch proposed a model of the Wigner’s friend
thought experiment for which it was possible for Wigner
to gain direct knowledge about whether or not the friend
had observed a definite outcome without her (the friend)

having to reveal which outcome she observed [10]. For
example, let us assume that a detector that is sensitive
to two modes j and k of a free bosonic field in Minkowski
space M is used to make a measurement on such a field

that is prepared in the state |φ+〉B = 1√
2
(|0j〉MB + |1k〉MB )

where |0〉MB and |1〉MB refer to the vacuum and single-
particle states respectively. After the measurement has
been completed, the measurement apparatus is found to
be in one of many perceptively different macroscopic con-
figurations corresponding to, for example, a particular
pointer reading or an audible click. In Deutsch’s model,
no assumptions need to be made concerning the friend’s
formal description of the result. It is simply enough that
she perceives a definite outcome.

Wigner then uses quantum theory to describe the
friend’s measurement as a unitary transformation. The

possible states of the field |0j〉MB and |1k〉MB are assumed
to be entangled with the perceptively different macro-
scopic configurations of the apparatus, the laboratory,
and the friend’s memory. We can represent these con-
figurations using a pair of orthogonal states |F0〉F and
|F1〉F respectively. The state of the composite system
consisting of the field mode and the friend’s laboratory
is thus

|Φ〉BF =
1√
2

(
|0j〉MB |F0〉F + |1k〉MB |F1〉F

)
. (1)

The particular phase between the two amplitudes of
equation (1) is specified by Wigner via the measurement
interaction. It is his specification of this phase that avoids
the necessity of describing the state as an incoherent mix-
ture of the two possibilities. Wigner can verify his state
assignment by performing a Bell state measurement in
the bases∣∣Φ±〉

BF
=

1√
2

(|0j〉MB |F0〉F ± |1k〉
M
B |F1〉F ),∣∣Ψ±〉

BF
=

1√
2

(|0j〉MB |F1〉F ± |1k〉
M
B |F0〉F ). (2)

In Deutsch’s proposal, Wigner obtains direct knowledge
about whether or not the friend actually observed a defi-
nite outcome without requiring that the friend reveal the
result. For instance, the friend could pass a note through
a slot in the laboratory door on which is written either
“I have observed a definite outcome” or “I have not ob-
served a definite outcome” as show in Figure 1. As long
as the message does not contain any information regard-
ing the actual outcome of the friend’s measurement, the
state of the encoded message can be factored out of the
total state which then would read

|Φ〉BFI =
1√
2

(
|0j〉MB |F0〉F + |1k〉MB |F1〉F

)
⊗ |“I have observed a definite outcome.”〉I .

(3)

(Here we are assuming that the friend always observes a
definite outcome when performing a measurement.) Be-
cause the state of the message can be factored out, we
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FIG. 1. Wigner can obtain information regarding whether or
not his friend has performed the measurement without learn-
ing the result of the measurement. For instance, the friend
could simply pass a note through the laboratory door that in-
dicates whether or not the friend obtained a definite outcome.
(Figure courtesy of C̆aslav Brukner.)

see that Wigner can obtain direct evidence for the ex-
istence of his friend’s facts without knowing what those
facts are. As such, both Wigner’s facts and his friend’s
facts appear to coexist.

In a framework in which we can account for observer-
independent facts, we should be able to jointly as-
sign truth values to the observational statements A1:
“Wigner’s friend’s measurement apparatus indicates the
bosonic field is in the vacuum state” and A2: “Wigner’s
measurement apparatus indicates the overall state is Φ.”
Wigner, of course, can learn the truth value of either of
these two statements. If he performs a Bell measure-
ment, he obtains the truth value for A2 whereas if he, for
example, simply opens the laboratory door and speaks
to his friend, he can obtain the truth value for A1. But
in order for observer-independent facts to exist, we must
be able to assign a truth value to both A1 and A2 in-
dependently of which measurement Wigner performs, i.e.
independently of whether he makes a Bell measurement
or opens the lab door. In other words, if the outcome
Φ is observer-independent, then A1 is true regardless
of whether or not Wigner actually makes that measure-
ment.

Brukner formalizes this by postulating that the truth
values of the propositions Ai for all observers form a
Boolean algebra that is equipped with a countably ad-
ditive positive measure p(A) ≥ 0 for all propositions that
correspond to the probability that a given proposition is
true. For the scenario described here, we assume that we
can jointly assign truth values (+1 = true, −1 = false)
to the statements A1 and A2 and thus may also assign
joint a joint probability p(A1 = ±1, A2 = ±1). Brukner’s
no-go theorem, which is a Bell-type theorem, then uses
the fact that A1 and A2 do not commute and is stated
as follows [8]:

Theorem II.1 (Brukner’s no-go theorem). The follow-
ing statements are incompatible, i.e. they lead to a con-
tradiction:

1. Quantum predictions hold at any scale, even if
the measured system contains objects as large as

FIG. 2. A Bell-type experiment with two entangled Wigner’s
friend scenarios. Alice and Bob are the super-observers
who perform measurements on the respective labs contain-
ing Charlie and Debbie. Charlie and Debbie each perform a
quantum measurement on one-half of an entangled system.
(Figure courtesy of C̆aslav Brukner.)

an “observer” (including her laboratory, memory,
etc.). This is the assumption that quantum theory
is universally valid.

2. The choice of the measurement settings of one ob-
server has no influence on the outcomes of any
other other distant observer(s). This is the assump-
tion of locality.

3. The choice of measurement settings is statistically
independent from the rest of the experiment. This
is the freedom of choice assumption.

4. One can jointly assign truth values to the proposi-
tions about observed outcomes (“facts”) of different
observers (as just described).

Proof. Consider a pair of super-observers (Alice and Bob)
who play the role of Wigner in a Deutsch-like Wigner’s
friend experiment as shown in Figure 2. That is, these
super-observers may each carry out experiments on a sys-
tem that includes a laboratory containing an observer
(Charlie and Debbie respectively) who performs an ex-
periment on a free bosonic field mode. We can thus
perform a Bell-type test for which Alice chooses be-
tween measurements A1 and A2 which correspond to
the statements that Charlie and Alice can respectively
make about their measurement outcomes. Likewise, B1

and B2 are similar measurements that apply to Debbie
and Bob respectively. The assumptions (2), (3), and (4)
define hidden variables that pre-determine the values of
A1, A2, B1, and B2 to be either +1 or −1. As such
we can also define a joint probability p(A1, A2, B1, B2)
whose marginals satisfy the Clauser-Horne-Shimony-Holt
(CHSH) inequality: S = 〈A1B1〉 + 〈A1B2〉 + 〈A2B1〉 −
〈A2B2〉 ≤ 2

√
2.

Suppose that Charlie and Debbie initially share an en-
tangled two-mode free bosonic field that is in the state

|ψ〉B1B2
= − sin

θ

2

∣∣φ−〉
B1B2

+ cos
θ

2

∣∣ψ+
〉
B1B2

(4)

where∣∣φ−〉
B1B2

=
1√
2

(
|0j〉MB1

|0k〉MB2
− |1j〉MB1

|1k〉MB2

)
(5)∣∣ψ+

〉
B1B2

=
1√
2

(
|0j〉MB1

|1k〉MB2
+ |1j〉MB1

|0k〉MB2

)
(6)
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and, again, j and k refer to the respective modes. Here
Charlie controls mode j and Debbie controls mode k
where each is inside their own laboratory. The state given
by equation (4) can be obtained by applying the appro-
priate pseudospin operators to the singlet state [11].

For Alice and Bob, the initial state together with the
overall state of the laboratories is

|Ψ0〉 = |ψ〉B1B2
|0〉C |0〉D

where the states |0〉C and |0〉D require no further char-
acterization except to say that the observers are capable
of completing a measurement.

Now we assume that Charlie and Debbie each have ac-
cess to a detector that is sensitive to the single mode that
is under their control (e.g. j for Charlie and k for Deb-
bie). They each perform a measurement of their respec-
tive modes which amounts to determining if their mode is
in the vacuum or single-particle state. From the point of
view of Alice and Bob, these measurements are described
by unitary transformations. Once the measurements are
complete, we assume that the overall state of the entire
system becomes∣∣∣Ψ̃〉 = − sin

θ

2

∣∣Φ+
〉

+ cos
θ

2

∣∣Ψ−〉 (7)

where ∣∣Φ+
〉

=
1√
2

(|Ag〉 |Bg〉 − |Ae〉 |Be〉) , (8)∣∣Ψ−〉 =
1√
2

(|Ag〉 |Be〉+ |Ae〉 |Bg〉) (9)

and

|Ag〉 = |0s〉MB1
|C0s
〉C , |Ae〉 = |1s〉MB1

|C1s
〉C , (10)

|Bg〉 = |0k〉MB2
|D0k
〉D , |Be〉 = |1k〉MB2

|D1k
〉D (11)

where the subscript g refers to the vacuum state and the
subscript e refers to the single-particle state. Here the
states |C0s〉 and |C1s〉 correspond to orthogonal states of
Charlie’s lab associated with the two measurement out-
comes (and similarly for Debbie’s lab). The details of
these lab states is unimportant. All that matters is that
they are orthogonal.

We next define two sets of binary observables in anal-
ogy to the Pauli spin operators along the z and x axes
respectively:

Az = |Ag〉 〈Ag| − |Ae〉 〈Ae| (12)

Ax = |Ag〉 〈Ae|+ |Ae〉 〈Ag| . (13)

Similar operators can be defined for Bz and Bx. In the
Bell experiment, Alice chooses between A1 = Az and
A2 = Ax and likewise for Bob. In this case, A1 and B1

represent a Wigner’s friend type of measurement while
A2 and B2 represent a Wigner type of measurement. If
we set θ = π/4, then we find a violation of a CHSH-type
inequality of

S = 〈A1B1〉+ 〈A1B2〉+ 〈A2B1〉 − 〈A2B2〉 ≤ 2. (14)

z

t

I II

x2 − t2 = a−2e2aξ

FIG. 3. An accelerated observer in Minkowski space is
a static observer in a Rindler space. Worldlines of acceler-
ated observers in Minkowski space form a parabola x2 − t2 =
a−2e2aξ for constant a and ξ. Observers on such a trajec-
tory in region II are causally disconnected from region I and
vice-versa.

with a value of S = 2
√

2 which is a maximal violation in
agreement with Brukner’s results for spin-1/2 systems.

III. OBSERVER-INDEPENDENT FACTS IN
THE PRESENCE OF A HORIZON

Let us now consider the situation if there is relative
acceleration between the two halves of the experiment.
That is, let us uniformly co-accelerate Bob, Debbie, and
her laboratory with some proper acceleration a. Proper
acceleration is interpreted as a physical acceleration, i.e.
an acceleration that is measured by some device such
as an accelerometer. It is therefore measured relative
to an inertial observer who is momentarily at rest with
respect to the object under acceleration. In this case,
the states of mode k must be specified in Rindler coor-
dinates in order to properly describe what Debbie and
Bob observe. If we consider just a single spatial dimen-
sion z, the worldlines of uniformly accelerated observers
in Minkowski space correspond to hyperbolae to the left
(region I) and right (region II) of the origin on a space-
time diagram as in Figure 3. These regions are bounded
by light-like asymptotes that form the Rindler horizon.
Rindler coordinates are defined as

t = a−1eaξ sinh aτ, z = a−1eaξ cosh aτ, |z| < t

t = −a−1eaξ sinh aτ, z = a−1eaξ cosh aτ, |z| > t (15)
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where a is the proper acceleration as defined above, ξ is
a space-like coordinate, and τ is the proper time. The
Minkowski vacuum state,

|0〉M = Πj |0j〉M , (16)

which is defined as the absence of any particle excita-
tion in any of the j modes can be expressed in terms
of a product of two-mode squeezed states of the Rindler
vacuum [12] as

|0k〉M ∼
1

cosh r

∞∑
n=0

tanhn r |nk〉I |nk〉II , (17)

where cosh r = (1−e−2πΩ)−1/2, Ω := |k| c/a, and a is the
acceleration. The states |nk〉I and |nk〉II are Fock states
and refer to the mode decomposition in regions I and II of
Rindler space respectively. Likewise, the single-particle
states can be written as [13]

|1k〉M =
1

cosh2 r

∞∑
n=0

tanhn r
√
n+ 1 |(n+ 1)k〉I |nk〉II .

(18)
For the sake of argument, let us assume that Debbie, her
laboratory, and Bob are all uniformly accelerated in a
direction such that they are causally disconnected from
region I, i.e. they follow a trajectory given by the hyper-
bola x2 − t2 = a−2e2aξ as in Figure 3. As such, equa-
tion (11) becomes

|Bg〉 =
1

cosh r

∞∑
n=0

tanhn r |nk〉I |nk〉II |C0k
〉C

|Be〉 =

(
1

cosh2 r

∞∑
n=0

tanhn r
√
n+ 1

)
× |(n+ 1)k〉I |nk〉II |C1k

〉C . (19)

Since Bob, Debbie, and her laboratory are not causally
connected to region II, we must trace over the states in
this region which gives a mixed state, ρAB . We can then
form a pair of binary observables for Bob in analogy to
equations (12) and (13) and, once again setting θ = π/4,
we can test a CHSH-type inequality of the form shown in
equation (14). The expectation values in this inequality
are of the form 〈A1B1〉 = Tr(ρABA1B1). The problem
with evaluating this inequality, however, is that equa-
tion (19) includes an infinite (vector) sum over all values
of n which represents the fact that Fock space is infinite
in size. However, the sum is convergent and the size of
the Fock space can be truncated by setting nmax = N
when tanhN r < ε for some value of ε. That is, we choose
to ignore any vectors tanhn r |n〉 in the sum for which
tanhn r is sufficiently small. Nevertheless, the size of the
density matrix is still quite large even for small values of
N (e.g. it is 81× 81 for N = 3). As such it is necessary
to evaluate this numerically. Of particular interest to us
here is the dependence of S on the proper acceleration

FIG. 4. A plot of the value of S versus a/ |k| c. The transition
to classicality occurs when a/ |k| c ∼ 5.3. (Plot produced with
Python’s matplotlib package [16].)

a: does Brukner’s theorem hold for all values of a, some
values of a, or none?

We chose to implement our model using Python’s
QuTiP package which is especially well-suited for work-
ing with Fock states [14, 15]. It turns out that the value
of ε must be chosen carefully to ensure numerical sta-
bility while also not sacrificing any relevant physics. It
is reasonable to expect that the dependence of S on a
ought to be consistent with the dependence of the loga-
rithmic negativity on r as given in the work of Fuentes
and Mann [13]. Values of ε below roughly 0.1 demon-
strate strong instabilities for values of r ranging to ap-
proximately 6.0. With ε = 0.1, however, we obtain re-
sults that are consistent with those of Fuentes and Mann
for the logarithmic negativity. Our results are shown
in Figure 4. Classicality is reached when a/ |k| c ∼ 5.3.
Thus we can see that Brukner’s theorem does not hold for
all values of a. The the fact that the vacuum and single-
particle states can be written as equations (17) and (18)
was first shown by Davies and Unurh [17, 18]. As such,
the failure of Brukner’s theorem for free bosonic fields is
seen to be a consequence of the Unruh effect.

Due to the equivalence principle our results should hold
for gravitationally induced horizons as well and thus we
expect that this is a general statement. As such, it turns
out to have interesting implications for any spacetime
that includes a horizon.

IV. IMPLICATIONS

Brukner has suggested that one possible way around
this problem is to assume that since Bob, Debbie, and
her laboratory are beyond a horizon, in some sense they
can be thought to not exist from the standpoint of Alice
and Charlie [19]. We now describe a scenario in which it
is possible for Alice and Charlie to maintain knowledge
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of Bob’s and Debbie’s existence even if they pass beyond
a horizon.

If Bob (and Debbie) exist then Alice should be able to
assign a truth value to the proposition A3: “Bob, Debbie,
and her laboratory exist.” In order to address Brukner’s
point, it is merely necessary for Bob, Debbie, and her
laboratory to possess some objective property that en-
sures that they are somehow part of the same “universe”
as Alice in the sense that they contribute some lasting
effect on that universe. It is not necessary that they be
distinguishable in any way. It is simply necessary that
Alice be able to say that, in some way, they are still “in”
the same universe. Since we assume that Bob, Debbie,
and her laboratory collectively possess a (relativistically
invariant) mass m 1. As long as the mass m leads to
some measurable effect somewhere in the universe, then
Alice can assign a truth value to proposition A3.

Let us now suppose that Bob’s half of the experiment
is near a black hole of mass M . Further suppose that m
is a non-trivial fraction of M (Debbie’s laboratory, for ex-
ample, could be a planet and Bob could be orbiting that
planet in a spacecraft). We will motivate this require-
ment in a moment. We assume that Alice has the ability
to monitor the total mass of the black hole plus Bob’s
half of the experiment (perhaps through some standard
astrophysical method), i.e. she has the ability to monitor
that value m+M . As long as the value of m+M does
not change, then the truth value of proposition A3 should
be knowable since m contributes to the overall effect of
m+M on their surroundings.

Brukner’s argument is that if at any point Bob’s half of
the experiment were to cross a horizon (in this case, the
event horizon of the black hole) then, since Alice would
no longer have knowledge of Bob’s half, Bob, Debbie, and
her laboratory could be thought of as no longer existing
to Alice in some sense. However, if Bob’s half of the
experiment has crossed the event horizon, the black hole
hole’s mass is now m + M . In other words, while the
black hole and Bob’s half of the experiment are no longer
distinguishable from one another, the overall mass of the
system remains the same and thus Alice is still able to
assign a truth value to proposition A3. The requirement
that m is a non-trivial fraction of M ensures that any
change in the mass of the black hole after it absorbs Bob’s
half of the experiment, is measurable by Alice and, within
some range of error, is consistent with an absorption of
mass m. In other words, this requirement ensures that
Alice can assign a definite truth value to proposition A3.

We thus see that it is possible for Alice to conclude
that Bob, Debbie, and her laboratory still exist even af-
ter passing through a horizon. As such, it is possible for
Brukner’s theorem to fail in the presence of a horizon
while simultaneously ensuring that some proposition in-
volving an “existence criteria” can always be assigned a

1In order to ensure relativistic invariance, we define the mass
here as the magnitude of the four-momentum.

definite truth value. This would seem to suggest that the
presence of a horizon anywhere within a given spacetime
is enough to restore the notion of observer-independent
facts.

This has another consequence, however. Imagine, in-
stead, the usual Wigner’s friend experiment in the form
proposed by Deutsch. Recall that In a framework in
which we can account for observer-independent facts,
we should be able to jointly assign truth values to the
propositions A1 and A2 as defined in Section II. Let us
add to this the proposition A4: “Wigner’s friend exists.”
Crucially this implies that truth values can exist for A1

and A2. Note that this is different from proposition
A3 which referred to a collective Wigner’s friend experi-
ment in which Bob played the role of Wigner and Debbie
played the role of his friend. The existence of observer-
independent facts is assumed to require that the truth
values for A1 and A2 are independent of which measure-
ment Wigner performs. As we have just shown, it ap-
pears that observer-independent facts are preserved in
the presence of a horizon.

But now consider a situation in which Wigner’s friend
and her laboratory are in the presence of a black hole
and their collective mass is a non-trivial fraction of the
black hole’s mass. Wigner can continually monitor the
total mass of the black hole plus his friend and her labo-
ratory and thus can, at any point, assign a truth value to
proposition A4. Now suppose that at some point prior to
Wigner carrying out a measurement of type A1 or type
A2, his friend and her laboratory pass the black hole’s
event horizon. Due to the results outlined above, Wigner
can still assign a truth value to proposition A4 yet can-
not assign a truth value to either proposition A1 or A2.
As such it appears that it is possible for Wigner to know
that truth values for A1 and A2 exist and yet be unable
to determine them.

This appears to offer an interesting compromise on the
part of physics in regard to observer-independent facts.
While it is clear that Brukner’s theorem fails in the pres-
ence of a horizon and thus observer-independent facts
can exist, it also appears to be the case that this failure
comes at the cost of fully knowing those facts. In other
words, it may be that in order for observer-independent
facts to exist, some of those facts must be unknowable.

V. CONCLUSION

In this article we have examined the recent no-go theo-
rem for observer-independent facts proposed by Brukner
and have shown that the theorem fails in the presence
of a horizon. Our model employed entangled modes of
a free bosonic field our results for the dependence of the
Bell parameter S as a function of relative acceleration
a are consistent with known results for the logarithmic
negativity. However, we have also shown that the fail-
ure of Brukner’s theorem comes with a price. In order
to preserve the notion of observer-independent facts, we
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found that it must be that some of those facts remain
unknowable.

It is worth noting here that the use of definite particle
states for testing a situation such as this can prove prob-
lematic [20, 21]. Specifically, the bosonic field modes,
though confined to the respective laboratories of Charlie
and Debbie, are still highly non-local, which can lead to
superluminal signaling between two observers within the
laboratory, one to the past of the spacelike hypersurface
on which the observable in question is measured, and one
to the future. While it is not clear that this applies in the
scenario discussed in this paper, it is nevertheless worth
mentioning.

Regardless, however, the fact remains that the degra-

dation of entanglement by relative acceleration and,
equivalently, gravitation, is a well-established fact. The
specific form of entangled state that is shared by Charlie
and Debbie is largely immaterial as long as this is true.
Therefore, the results of Section IV remain valid.
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